This presentation was live at:

18-19 October 2023 • ExCel London

BCIA Young Engineers Network

presents

CPD Accredited
Understanding Smart
Communication Using BACnet

https://www.linkedin.com/showcase/bcia-young-engineers-network/

- The Building Controls Industry Association is the unified voice of the UK Building Controls Industry,
- We represent 158 members across the UK, our role includes: policy & advocacy; skills development
 and promotion of the sector as a career of choice; raising understanding of the fiscal and softer
 benefits of Building Controls; enable collaboration and best practice,
- Our career of choice activity includes the development of a suite of technical training courses;
 development of a level 4 BEMS Controls Engineer Apprenticeship; promotion of the sector to attract and retain talented people and courses to aid workforce development,
- BCIA also deliver the successful Young Engineers Network aimed at engineers under the age of 35. The YEN provides events, study visits and learning and provides access to a network that enables peer-topeer support and career development.

BCIA Young Engineers Network

Greg
EON Controls

Chair

South

Yousaf Sontay Ltd

North-Mids

Lucy Schneider Electric

Engagement

Our YEN Leaders

Topics covered in this presentation:

- What is smart communication?
- Why choose BACnet?
- What is BACnet?
- Network Architecture
- BACnet Devices
- BACnet Objects

- BACnet Services
- BIBBs
- Device Profiles
- Conforming to
 The BACnet Standard
- The BTL Mark
- An Example Device

What is smart communication?

"Smart" communicating products differ from conventional HVAC products in that they transfer measurement values as data rather than as analogue signals.

Examples of smart communications are:

- Modbus
- M-Bus
- LonWorks
- BACnet

Why Choose BACnet?

- International Standard maintained by ASHRAE,
- First considered in 1987 adopted in 1995,
- Standard is constantly evolving,
- Adopted as ISO Standard (ISO 16484-5) in 2001.

Why Choose BACnet?

- Standard has been adopted worldwide,
- European Group BACnet Interest Group Europe,
- BACnet is supported by all major manufacturers,
- Protocol supported across multiple media types,
- BACnet is a constantly evolving protocol.

What is BACnet?

BACnet is an acronym for:

- Building
- Automation and
- Control
- network

What is BACnet?

- Provides interoperability between different vendors' equipment,
- BACnet is a method for modelling B.A.S. information so that it is viewable across a network,
- Protocol for standardisation of:
 - Commands and Services,
 - Encoding of Data,
 - Network Independent Communication.

What BACnet is not

- Does not provide direct digital control,
- It's not a programming or control definition language,
- BACnet compliance does not imply a "single device fits all" solution.

Where to Obtain The Standard

 The standard can be purchased as a download from a number of sources,

Primarily it is available at:

https://www.ashrae.org

https://www.iso.org

- BACnet operates across multiple media types:
 - Ethernet: BACnet Ethernet and BACnet IP
 - EIA-485 (RS-485): BACnet MS/TP
 - EIA-232 (RS-232): BACnet PTP
 - Lonworks Networks
 - Arcnet
 - Zigbee Wireless Networks

- BACnet operates across multiple media types:
 - Ethernet: BACnet Ethernet and BACnet IP
 - EIA-485 (RS-485): BACnet MS/TP
 - EIA-232 (RS-232): BACnet PTP
 - Lonworks Networks
 - Arcnet
 - Zigbee Wireless Networks

Native BACnet Network

A BACnet building control network devoid of gateways

- BACnet hierarchy consist of:
 - Network
 - Devices
 - Objects
 - ✓ Properties
 - ✓ Services

BACnet Devices

- The components connected to the BACnet network,
- An abstract model consisting of objects, properties and services,
- Example BACnet devices are:
 - Supervisor Workstation
 - Unitary Field Controller
 - Smart Sensors
 - Smart Actuators.

BACnet Devices

- Must be auto-discoverable,
- Must be able to list all objects when queried,
- Must have a unique address on the BACnet internetwork,
- Must have a device object defined.

BACnet Objects

- Objects present the modelled device data in a standard format,
- The BACnet standard defines different object types,
- Example objects are:
 - Analogue Input
 - Binary Output
 - Multi-state Value

- Schedule
- Calendar
- Device Object

BACnet Objects

- Each object type has a defined set of properties,
- Properties represent the functionality of an object,
- Example properties are:
 - Object Name
 - Present Value
 - Units
- Property values can be assigned and read across the network.

BACnet Objects

As a minimum a device needs to have 1 object:

The Device Object

The device object is mandatory and contains all the necessary properties to identify the device on the network. *For example:*

- Device Name
- System Status

- Device Type
- List of Objects

- Object types support various services,
- Services are commands for accessing and manipulating information via the network,
- There are 5 categories of service:
 - Alarms and Events
 - Fire Access
 - Object Access

- Remove Device Management
- Virtual Terminal Services

- Services are requested via a client/server arrangement,
- A client requests a service and the server responds,
- Example request:
 - Operator Workstation (client) request values from smart sensor to display on graphic page.
 - Smart Sensor (server) responds with requested value.

- Some services require acknowledgement, others do not,
- Messages have a priority of 1 to 16,
- Lower numbers have higher precedence,
- Services provide the interoperability required for:
 - Data Sharing
 - Alarm and Event Management

- Scheduling
- Trending
- Device and Network Management

- "WHO_IS" and "I_AM" Service is used to identify devices on the network,
- Can be explicitly addressed or sent by a client as a broadcast message,
- Is the only service which can be initiated by a server,
- A device is permitted within the standard to announce itself through a broadcast "I_AM" message when powered on.

BIBBs

- BACnet Interoperability Building Blocks,
- BIBBs are groups of services designed to give engineers a quick method of ascertaining the type of functionality offered by a device,
- A BIBB consists of three parts:
 - Category
 - Request Type
 - Direction of Data Exchange

BIBBs

- There are 5 categories of BIBB
 - **DS** Data Sharing
 - AE Alarm and Event Management
 - SCHED Scheduling
 - **T** Trending
 - DM Data and Network
 Management

- Examples of request type are
 - **RP** Read Property
 - **WPM** Write Property Multiple
 - COV Change Of Value

BIBBs

- Direction of Data Exchange
 - A Uses Data
 - B Supplies Data

So a BIBB may take the form DS-RP-B – Meaning that the device is capable of supplying information using the read_property service.

If the above example was a smart sensor and we wanted to bind it to a controller, we would select a controller which supports the DS-RP-A BIBB.

Device Profiles

- Used to characterise devices based on a minimum number of BIBBs,
- Allows devices to be placed into one of eight categories based on a standard set of BACnet functionality:
 - B-AWS Advanced Operator
 Workstation
 - **B-OWS** Operator Workstation
 - **B-OD** Operator Display
 - **B-BC** Building Controller

- B-AAC Advanced Application
 Controller
- B-ASC Application Specific
 Controller
- **B-SA** Smart Actuator
- **B-SS** Smart Sensor

Device Profiles

	B-AWS	B-OWS	B-OD	B-BC	B-AAC	B-ASC	B-SA	B-SS
Data Sharing	DS-RP-A,B	DS-RP-A,B	DS-RP-A,B	DS-RP-A,B	DS-RP-B	DS-RP-B	DS-RP-B	DS-RP-B
	DS-RPM-A	DS-RPM-A		DS-RPM-A,B	DS-RPM-B			
	DS-WP-A	DS-WP-A	DS-WP-A	DS-WP-A,B	DS-WP-B	DS-WP-B	DS-WP-B	
	DS-WPM-A	DS-WPM-A		DS-WPM-B	DS-WPM-B			
	DS-AV-A	DS-V-A	DS-V-A					
	DS-AM-A	DS-M-A	DS-M-A					
Alarm & Event Management	AE-N-A	AE-N-A		AE-N-I-B	AE-N-I-B			
	AE-ACK-A	AE-ACK-A		AE-ACK-B	AE-ACK-B			
		AE-INFO-A		AE-INFO-B	AE-INFO-B			
		AE-ESUM-A		AE-ESUM-B				
	AE-AS-A	AE-AS-A						
	AE-AVM-A	AE-VM-A						
	AE-AVN-A	AE-VN-A	AE-VN-A					
	AE-ELVM-A2							
Scheduling	SCHED-AVM- A	SCHED-A or SCHED-VM-A		SCHED-E-B	SCHED-I-B			
Trending	T-AVM-A	T-VMT-A T-V-A		T-VMT-I-B				
		T-ATR-A		T-ATR-B				
Device & Network Management	DM-DDB-A,B	DM-DDB-A,B	DM-DDB-A,B	DM-DDB-A,B	DM-DDB-B	DM-DDB-B	DM-DDB-B1	DM-DDB-B1
	DM-ANM-A							
	DM-ADM-A							
	DM-DOB-B	DM-DOB-B	DM-DOB-B	DM-DOB-B	DM-DOB-B	DM-DOB-B	DM-DOB-B1	DM-DOB-B1
	DM-DCC-A	DM-DCC-A		DM-DCC-B	DM-DCC-B	DM-DCC-B		
	DM-MTS-A	DM-TS-A DM-MTS-A		DM-TS-BorDM-UTC-B	DM-TS-BorDM-UTC-B			
		DM-UTC-A						
	DM-OCD-A							
	DM-RD-A	DM-RD-A		DM-RD-B	DM-RD-B			
	DM-BR-A	DM-BR-A		DM-BR-B				
	NM-CE-A	NM-CE-A		NM-CE-A				

Conforming to The BACnet Standard

- In order to claim that a device conforms to the BACnet standard there are a number of criteria which must be met:
 - A Protocol Implementation Conformance Statement (PICS) must be produced for the device,
 - The device must be tested and test data recorded,
 - The device must be capable of communicating using recognised BACnet data-link and physical layer technology,
 - All minimum object/property/service requirements are met.

BTL Mark

- BACnet devices can be tested for compliance at a registered BACnet Testing Laboratory,
- If certified as compliant with the BACnet standard then the product is permitted to display the BTL Mark,
- BTL testing is a certificate of compliance but is not mandatory.

Are There Disadvantages?

- Commercial argument against open protocols,
- Network Security,
- Changes required skills to engineer a BAS.

Thank You

Questions

9-10 October 2024 • ExCeL London

We look forward to seeing you in 2024